Electron-Transfer Reactions of Multidentate Ligand Cobalt(III) Complexes. II. The Effect of Nonbridging Ligands

Yoshimi Kurimura and Kousaburo Ohashi*
College of General Education, Ibaraki University, Mito
*Department of Chemistry, Ibaraki University, Mito
(Received September 24, 1970)

The specific rates for the Fe²⁺ reductions of cis-Co(en)₂ACl²⁺ (A=methyl-, ethyl-, propyl-, butyl-, ethanol-, and propanolamine), Co(dien)(en)Cl²⁺ and Co(tetren)Cl²⁺ have been determined. The observed rates are relatively insensitive to the cis-ligand of the A. The rate constant for the cis-Co(en)₂ACl²⁺ decreases with an increase in the size of the A ligand. In such cases as that of the aminoalcohol ligand, the rate is greater than that of the corresponding alkylamine ligand complex. The effect of chelation by nonbridging ligands has been discussed by comparing the relative effectiveness for Fe²⁺ reductions of CoN₅Cl²⁺ (N₅=(NH₃)₅, (en)₂NH₃, (dien)(en), and tetren) with that for Cr²⁺ reductions of some Co(III) complexes.

One of the most interesting points encountered in the inner-sphere electron-transfer reactions of Co(III) complexes may be the effect of nonbridging ligands on the specific rates of the reactions. It has been demonstrated that the reactivity patterens of Co(III) complexes in the electron-transfer reactions which proceed through bridged activated complexes may be much affected by the effects of the ligand-field strength of the trans-ligand (the a effect)1,2) and by the energy required to stretch the trans-ligand away from the Co(III) center (the b effect).3) Another explanation has been proposed by Fraser;4) he explained the effect of chelate formation by nonbridging ligands on the reactivity of the Co(III) complexes with a CoN₅Xⁿ⁺ configuration, where X is OAc-, Cl-, and SO₄-, in terms of the solvation energy (the c effect).

It has been shown in the previous paper⁵) that the effects of both (a) and (b) may be important in the Fe²⁺ reductions of cis-CoN₄XClⁿ⁺ (N₄=(NH₃)₄, (en)₂, and trien, X=H₂O and CI⁻), since the free energy for bond stretching for the Co-N bond, in which N is the nitrogen atom located in the trans-position to the chloride ion, has a relatively large portion of free energy of activation.

The effect of *cis*-ligand on the rate has also been studied, and it has been demonstrated that the size of the nonbridging *cis*-ligand of B is not the most important factor in determining the reactivity of *cis*-Co(en)₂-BCl²⁺.6.7)

The purposes of this study are to investigate the effect of the nonbridging ligand in the Co(III) complexes and to obtain some detailed information about the effect of the *cis*-ligand in the Fe²⁺ reductions of *cis*-Co(en)₂ACl²⁺ complexes.

2) H. Taube, Adv. Inorg. Chem., 1, 1 (1959).

Experimental

Materials. cis-[Co(en)₂ACI]Cl₂,8,9) [Co(tetren)CI]Cl₂¹⁰ (tetren=tetraethylenepentamine), and [Co(dien)(en)CI]Cl₂¹⁰ (dien=diethlenetrianime and en=ethylenediamine) were prepared by the procedures described in the references cited. The identities of these complexes were confirmed analytically and spectrophotometrically. The preparation of the iron(II) perchlorate solution and the determinations of concentrations of iron(II), the perchlorate anion, and the hydrogen ion were carried out using procedures previously reported.⁵⁾ All the other chemicals were of a reagent grade and were used without further purification. The concentrations of perchlorate and hydrogen ions in the iron(II) solution were adjusted by the addition of sodium perchlorate and perchloric acid.

The general procedure was to Kinetic Measurements. make up the reaction mixture in a Erlenmayer flask, and then to transfer the mixture to a spectrophotometer cell, which had been placed in a thermostated cell compartment of a Hitachi Model 124 spectrophotometer, using a injection syringe. The reactions were followed by observing the decrease in the absorbance of the Co(III) complexes at the wavelength in the vicinity of the first absorption maximum. The wavelengths used were 535 nm, 525 nm, and 480 nm in the cases of cis-Co(en)2ACl2+, Co(dien)(en)Cl2+, and Co(tetren)Cl2+ respectively. All the measurements were carried out under pseudo-first-order conditions, in which there was much more iron(II) than Co(III) complexes. The second-order rate constant for the iron(II) reduction of the Co(III) complex defined by -d[Co(III)]/dt = k[Co(III)][Fe(II)] was calculated from the concentration of iron(II) and the slope of the $log(A_t A_{\infty}$) vs. time plot, which is equal to $-k[\text{Fe}^{2+}]/2.303$, where A_t is the absorbance at time t; A_{∞} , the absorbance after all the Co(III) complex has been reduced to Co(II), and k, the rate constant. The value of A_{∞} was calculated by the A_{∞} = ε[Co(II)] equation, where [Co(II)] is equal to the initial concentration of the Co(III) complex and where ε is the molar extinction coefficient of the aquo-cobalt(II) ion.

Results

Reductions of cis- $Co(en)_2ACl^{2+}$. In all cases, the $\log(A_t - A_{\infty})$ vs. t plots were substantially linear for at

L. Orgel, Report of the Tenth Solvay Conference, Brussels,
 289 (1956).

³⁾ P. Benson and A. Haim, J. Amer. Chem. Soc., 89, 3945 (1967).

⁴⁾ R. T. M. Fraser, Inorg. Chem., 2, 954 (1963).

⁵⁾ Y. Kurimura, K. Ohashi, T. Ohtsuki, and H. Yamamoto, This Bulletin, 44, 1293 (1971).

⁶⁾ R. C. Patel and J. F. Endicott, J. Amer. Chem. Soc., 90, 6364 (1968).

⁷⁾ R. C. Patel, R. E. Ball, J. F. Endicott, and G. Huhges, *Inorg. Chem.*, 9, 23 (1970).

⁸⁾ J. C. Bailar, Jr., and L. B. Clapp, J. Amer. Chem. Soc., 67, 171 (1945).

⁹⁾ S. C. Chan and F. Leh, J. Chem. Soc., A, 1966, 760.

¹⁰⁾ R. G. Peason, C. R. Boston, and F. Basolo, J. Phys. Chem., 59, 304 (1955).

Table 1. Rate constants for Fe²⁺ reductions of cis-Co(en)₂ACl²⁺ $\sum (\text{ClO}_4^{-}) = 1.0\text{m}, \ [\text{H}^+] = 0.10\text{m}$

Exp. No.	Α	[Fe(II)]	[Co(III)] 10 ⁻³ M	Temp.,°C (±0.1°C)	Rate constant 10 ⁻⁵ m ⁻¹ sec ⁻¹
1	Methylamine	0.472	6.26	25.0	2.79
2	Methylamine	0.254	6.52	25.0	2.65
3	Methylamine	0.472	6.57	35.0	6.22
4	Methylamine	0.472	6.80	44.0	12.3
5	Ethylamine	0.472	6.62	25.0	2.74
6	Ethylamine	0.254	5.60	25.0	2.65
7	Ethylamine	0.472	7.47	35.0	5.91
8	Ethylamine	0.472	6.93	44.0	11.8
9	Propylamine	0.415	6.01	25.0	2.57
10	Propylamine	0.254	6.40	25.0	2.59
11	Propylamine	0.415	5.86	35.0	5.87
12	Propylamine	0.415	6.21	44.0	11.1
13	Butylamine	0.472	5.60	25.0	2.08
14	Butylamine	0.254	5.81	25.0	1.98
15	Butylamine	0.472	4.04	34.5	4.40
16	Butylamine	0.472	4.27	44.0	9.71
17	Ethanolamine	0.415	4.18	25.0	4.63
18	Ethanolamine	0.254	5.86	25.0	4.72
19	Ethanolamine	0.415	4.04	34.5	11.0
20	Ethanolamine	0.415	5.89	44.0	19.4
21	Propanolamine	0.415	6.35	25.0	3.14
22	Propanolamine	0.254	5.51	25.0	3.07
23	Propanolamine	0.415	4.19	34.5	7.67
24	Propanolamine	0.415	4.16	44.0	13.9

Table 2. Rate constants and activation parameters for Fe²⁺ reductions of cis-Co(en)₂ACl²⁺ at 25°C

A	Rate constant ^a) 10 ⁻⁵ m ⁻¹ sec ⁻¹	${\it \Delta}F^{ m +b)}$	∆ H*b)	<i>∆S</i> * e. u.	p	K_a
NH_3	1.8 ^c)				9.	25
Methylamine	2.72	23.7	13.9	-32.7	$10.72,^{d}$	10.62h)
Ethylamine	2.70	23.7	13.8	-33.1	10.81°)	10.63h)
Propylamine	2.58	23.7	13.4	-34.5		10.53h)
Butylamine	2.03	23.8	13.8	-33.7	10.71^{f}	10.61h)
Ethanolamine	4.68	23.3	13.8	-32.0	9.74^{g}	9.50^{h}
Propanolamine	3.11	23.6	14.5	-30.4		

- a) Except for A=NH₃, average values obtained by this work at 25 ± 0.1°C.
- b) Units are kcal·mol⁻¹.
- c) From Ref. 3.
- d) R. Yaffe and A. F. Voight, J. Amer. Chem. Soc., 74, 5043 (1952).
- e) G. A. Carlson, J. P. McReynolds, and F. H. Verhoek, J. Amer. Chem. Soc., 67, 1344 (1945).
- f) J. Bjerrum, Chem. Rev., 46, 381 (1950).
- g) R. J. Bauehlman and F. H. Verhoek, J. Amer. Chem. Soc., 70, 1401 (1948).
- h) A. Albert and E. P. Sergent, "Ionization Constants of Acid and Bases," Methuen and Co., Ltd., London (1962).

least 2 half-lives. Summeries of the kinetic measurements and activation parameters are presented in Tables 1 and 2 respectively.

Reductions of $Co(dien)(en)Cl^{2+}$ and $Co(tetren)Cl^{2+}$. The second-order rate constant for the Fe²⁺ reduction of $Co(dien)(en)Cl^{2+}$ was obtained from the slope of the $log(A_t-A_{\infty})$ plot (see Fig. 1) and the concentration of the Fe²⁺. The $log(A_t-A_{\infty})$ plots were linear up to 1000 min in all cases, so the effect of aquations of the Co(III) complexes could be neglected. The reported rate constant for the aquation of $Co(dien)(en)Cl^{2+}$ is 5.2×10^{-7} sec⁻¹ at 35°C and pH=1.8) Though the

rate of the disappearence of the Co(dien)(en)Cl²⁺ was followed up to 1000 min, the value of $A_t - A_{\infty}$ was relatively small since the reduction rate was very slow; therefore, the rate constants obtained were of poor quality. The second-order rate constants for the Fe²⁺ reduction of the Co(dien)(en)Cl²⁺ are presented in Table 3. Our attempt to determine the rate constant for the Fe²⁺ reduction of Co(tetren)Cl²⁺ by the above method failed because of the extremely slow reaction rate. The absorbance of a reaction mixture containing 0.46 M of iron(II) and 5.0×10^{-3} M of the complex at 580 nm under the conditions of $\Sigma[\text{ClO}_4]$

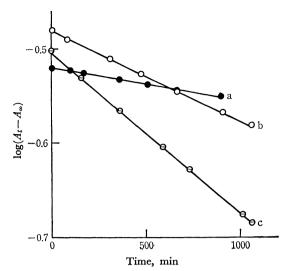


Fig. 1. Plots of $\log(A_t - A_{\infty})$ vs. time for Fe²⁺ reduction of Co(dien)(en)Cl2+.

a: $[Co(III)] = 4.51 \times 10^{-3} \text{M}, 25.0^{\circ} \text{C}$

b: $[Co(III)] = 4.61 \times 10^{-3} \text{M}, 33.0^{\circ} \text{C}$

c: $[Co(III)] = 4.76 \times 10^{-8} \text{m}, 40.0^{\circ} \text{C}$ $[Fe^{2+}] = 0.37 \text{m}, \sum [ClO_4^{-}] = 1.0 \text{m}, [H^{+}] = 0.10 \text{m}$

=1.0 m and [H+]=0.10 m hardly decreased for 40 hr after the initiation of the reaction at 25°C. Therefore, the rate constant for the Fe²⁺ reduction of the Co(tetren)-Cl²⁺ was estimated not to exceed 10⁻⁸m⁻¹sec⁻¹ at 45°C.

Table 3. Rate constants for Fe^{2+} reduction of Co(dien)(en)Cl2+ $\sum [\text{ClO}_4^-] = 1.0_{\text{M}}$

[Fe ²⁺] M	[Co(III)] 10 ⁻³ м	Temp., °C (±0.1°C)	Rate constant $10^{-6} \text{ m}^{-1} \text{ sec}^{-1}$
0.13	5.57	25.0	6.2a)
0.37	4.95	25.0	5.9^{b}
0.37	4.51	25.0	6.0^{b}
0.37	4.61	33.0	10 ^{b)}
0.37	4.76	40.0	16 ^{b)}

a) $[H^+]=0.10 \text{ m}$, b) $[H^+]=0.26 \text{ m}$

Discussion

Effect of the Nonbridging cis-Ligand. It may be reasonable to assume that all the reactions now beeing studied proceed via a chloride-bridged activated complex^{3,5)}. In such reactions of Co(III) complexes, it has been suggested that the effect of the nonbridging cis-ligand on the rate is of minor importance.⁶⁾ trend also seems to be valid for the reactions of cis-Co-(en)₂ACl²⁺ with Fe²⁺ (Table 1). However, detailed information about the effect of the cis-ligand of the A is given by the results summarized in Table 1. The specific rate of the cis-Co(en)₂NH₃Cl²⁺ is smaller than that of the alkylamine complexes under investigation. In such cases as the alkylamine ligands, the value of the ligand field may be slightly lowered in comparison to the ligand field for NH₃.11,12) This may account for smaller effectiveness of the cis-Co(en)₂NH₃Cl²⁺ than that of the cis-Co(en)₂NH₂CH₃Cl²⁺. In the case of the alkylamine ligand, the reactivity successively decreases with an increase in the size of the amine ligand from methylamine to butylamine. Similar behavior was also observed in the case of the aminoalcohol ligand. A distinctive correlation between pK_a and the specific rate could not be found in the reactions of cis-Co(en)₂ACl²⁺ with Fe²⁺. A decrease in the rate with an increase in the size of the A may be due to a decrease in the stabilization of the activated state as the size of the A increases. The aminoalcohol complex is much more effective than the corresponding alkylamine complex. For example, the rate constant for the ethanolamine complex is 1.7 times that for the ethylamine complex. This suggests that the introduction of a hydroxyl group into the nonbridging cis-ligand facilitates the reaction rate. The presence of a hydroxyl group in the nonbridging ligand may stabilize the activated complex due to an increase in the solvation energy relative to that of the activated complex formed by the corresponding alkylamine ligand complex and Fe2+.

Table 4. Rate constants for Fe2+ reductions of CoN_5Cl^{2+} complexes $\sum [ClO_4^-] = 1.0 \text{m}, [H^+] = 0.10 \text{m}$

Complex	Rate constant _M ⁻¹ sec ⁻¹	Ref.
$Co(NH_3)_5Cl^{2+}$	1.6×10 ^{-3 a)}	14
cis-Co(en)2NH3Cl2+	$(1.8\pm0.1)\times10^{-5}$ by	3
$Co(dien)(en)Cl^{2+}$	6.0×10^{-6} b)	this work
Co(tetren)Cl ²⁺	$< 10^{-8 \text{ b}}$	this work
-\ 05 E9C	0500	

a) 25.5°C. b) 25°C.

Effect of Chelation by Nonbridging Ligands. relative effectiveness for Fe²⁺ reductions of the CoN₅-Cl²⁺ is appreciably decreased with an increase in the number of chelate rings in the Co(III) complex, as is shown in Table 4. The decreasing order of the effectiveness is Co(NH₃)₅Cl²⁺>Co(en)₂NH₃Cl²⁺>Co-(dien)(en)Cl²⁺>Co(tetren)Cl²⁺. Similar behavior was also observed in the Fe2+ reductions of cis-CoN4OH2-Cl2+.5) The effect of the trans-ligand on the rate of the electron-transfer reactions which proceed via the bridged activated complexes may be classified into: a) the ligand-field strength of the trans-ligand^{1,2)} and b) the energy required to stretch the trans-ligand away from the Co(III) center.3) The relative reduction rate would be smaller if the trans-ligand has a stronger ligand field and/or if more energy is required to stretch the metal-ligand bond along the z axis. The relative effectiveness for Cr^{2+} reductions of CoN_5X^{n+} is decreased with an increase in the number of the chelate ring when X=SO₄²⁻; however, the effectiveness is almost the same when X=OAc- and perhaps also when X=Cl^{-,4}) The solvation effect was introduced by Fraser⁴⁾ to explain such results.

If we consider that the effects of (a) and (b) mentioned above are major factors in determining the rate of the electron-transfer reactions of the Co(III) complexes, the relative effectiveness for Cr2+ reductions of the CoN₅Xⁿ⁺, whenever X=OAc⁻, Cl⁻, or SO₄²⁻, would

¹¹⁾ M. Paris and N. F. Feiner, Inorg. Nucl. Chem. Lett., 3, 337

¹²⁾ S. C. Chan and K. Y. Hui, Aust. J. Chem., 20, 2529 (1967).

be changed by replacing the nonbridging ligand by an other ligand, for example, by replacing NH3 by en or en by tetren, since the ligand-field strength may be increased in the order of NH3<en<tetren and the energy needed for the removal of these ligand from the Co(III) center may be in the same order. On the other hand, when the solvation effect is considered to be only the predominant factor in determining the rate, the relative effectiveness for the Fe2+ reductions of the $Co(NH_3)_5Cl^{2+}$, $Co(en)_2NH_3Cl^{2+}$, $Co(dien)(en)Cl^{2+}$, and Co(tetren)Cl2+ would be almost the same as in the cases of Cr²⁺ reductions of the CoN₅OAc²⁺, because the overall charge on the Co(III) and Co(II) complexes and on the Fe(II) and Fe(III) complexes are identical, since the FeCl2+ is the only Fe(III) species produced in the reaction:

$$CoN_5Cl^{2+} + Fe^{2+} \longrightarrow Co^{2+} + 5N + FeCl^{2+}$$

though it would dissociate into Fe³⁺ and Cl⁻ under the experimental conditions.¹³⁾

Therefore, we assume that the free energies for the bond stretching of the Co-N bonds (ΔF_s) are very little in the case of $\text{CoN}_5 X^{n+}$ - Cr^{2+} reactions and large

for CoN₅Xⁿ⁺-Fe²⁺ reactions. It seems reasonably to say that the specific rates of the former reactions are hardly affected by chelate formation by nonbridging ligands if the over-all charge described above is not changed. However, the specific rates of the latter reactions are appreciably affected by the chelate formation of the nonbridging ligands, since ΔF_s may be mainly affected by the nature of the trans-ligand in this case. Such an assumption was reasonably accepted in the Fe²⁺ reductions of cis-CoN₄XClⁿ⁺ (N=NH₃, 0.5 en, and 0.25 trien and X=H₂O and Cl-) in the previous work.5) The results obtained here account for the fact that one of the most important factors in determining the rates of the electron-transfer reactions of the Co(III) complexes is the free energy for bond stretching of the Co-N bond in the Fe2+ reductions of cis-CoN₄XClⁿ⁺ and CoN₅Cl²⁺. The major factors which affect the effectiveness may be: the effect of the solvation in the Cr2+ reductions of CoN₅SO₄+, the ligand-field strength of the trans-ligand, and the energy required to stretch the Co-N bond in the Fe2+ reductions of the CoN₅Cl²⁺, and the effect of the solvation, the ligand-field strength of the trans-ligand, and the stretching energy in the Fe2+ reductions of the cis-CoN₄Cl₂+.

¹³⁾ A. Haim and N. Sutin, J. Amer. Chem. Soc., 88, 5343 (1966).

¹⁴⁾ H. Diebler and H. Taube, Inorg. Chem., 4, 1029 (1965).